Principles for Designing Symmetric Protein Assemblies

Todd Yeates -- RosettaCon 2012

Biological Protein Assemblies: An inspiration and a challenge

virus capsid

Heat shock protein

clathrin

CsoS4 or CcmL
proteins

bacterial microcompartments
Design assembly successes trail those using DNA

Symmetry-Centric Approaches to Designing Protein Assemblies

Biological Protein Assemblies

- Nearly always symmetric
- Predicted as early as 1956 by Crick and Watson
- Repetitive symmetric assemblies require fewer distinct contact or interface types

NATURE
March 10, 1956
Vol. 177

STRUCTURE OF SMALL VIRUSES
molecular level, a structure of a definite size and shape has to be built up from smaller units; namely, that the packing arrangements are likely to be repeated again and again-and hence that the subunits are likely to be related by symmetry elements.

Table 1. The Three Possible Cubic Point groups for a Spherical

Crystallographic description	No. and type of rotation axes present	No. of asymmetric units	Platonie solid with these sym. metry elements
23	$\begin{aligned} & 3 \text { 2-fold } \\ & 43 \text {-fold } \end{aligned}$	12	Tetrahedron
432	6 4 4 3 3 3 -fold 4	24	Cube Octahedron
532	152 -fold 103 -fold 0 5-fold	60	Dodecahedron Icosahedron

The number of sub-units will be the same as, or a multiple of, the
number of asymmetric units
F. H. C. Crick
J. D. Watson*

Medical Research Council Unit for the
Study of the Molecular Structure of
Biological Systems,
Cavendish Laboratory,
Cambridge
Jan. 23.

Number of Distinct Contact Types as a Central Idea

- Limited Outcomes with Only a Single Distinct Contact Type:

$$
\begin{array}{cc}
\ldots 66666 \ldots & 6^{\circ} . . . \\
\text { linear or helical filaments } & 0_{0}^{9}
\end{array}
$$

- Richer Outcomes Using >1 Contact Type:

Key Design Questions and a Connection to Group Theory

- What kinds of higher symmetries should be targeted for design, and how?
- How many contacts and in what geometries are required for various symmetries?
- Equivalent to a (incompletely solved) problem in group theory: What is the fewest number of elements of a (potentially infinite) group from which the group can be generated?

A Connection Between Design and Group Theory

Number of designed contacts required

Minimum number of elements required to 'generate' the group

Examples:

$$
\begin{aligned}
& \{1, i,-1,-i\} \\
& \left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right]\left[\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right]\right.
\end{aligned}
$$

A Connection Between Design and Group Theory

Number of designed contacts required

Minimum number of elements required to 'generate' the group

Examples:

$$
\left.\left.\begin{array}{l}
\{1, i,-1,-i\} \\
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right.
\end{array}\right]\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right]\right\}
$$

A Connection Between Design and Group Theory

Number of designed contacts required

Minimum number of elements required to 'generate' the group

Examples:

A Brief Diversion:

The space group preference problem

Top 1: ~33\% Bottom 55: 20\%

One of the most puzzling (and overlooked) problems in structural biology. The differences in probability span more than 2 orders of magnitude, yet there are no obvious energetic explanations.

Different Crystal Space Group Symmetries Have a Different Minimum Contact Number, C

This number relates to how easy it is (how many degrees of freedom there are) to build

p2, $\mathrm{C}=3$

$$
\mathrm{p} 4, \mathrm{C}=2
$$

C is a property of the mathematical group, not the molecule

Different Crystal Space Group Symmetries Have a Different Minimum Contact Number, C

 This number relates to how easy it is (how many degrees of freedom there are) to build

p2mm, C=4

When the values of C for the 65 biological space groups were enumerated, they provided a powerful explanation for observed space group preferences.

Agreement between the dimensionality for forming different space groups and their observed frequencies

- The 65 possible space group symmetries fall into 4 categories of increasing likelihood: $D=4,5,6,7 \quad$ (factor of ~8 for each increment in D)

- Only one space group, $\mathrm{P} 2_{1} 2_{1} 2_{1}$, which dominates in macromolecular crystals, has D=7 !!
- A dimensionality analysis explains most of the observed phenomenon.

Extending the Theory: Mirror image proteins provide a potentially powerful solution to the protein crystallization problem

Predictions from theory

- Proteins will crystallize much more easily if they can be prepared as a racemic mixture; this requires chemical synthesis of the mirror image protein (i.e. from Damino acids)
- P1(bar) will dominate for racemic crystallization of proteins; this highly specific prediction provides a powerful test of the theoretical ideas

Space group

Yeates and Kent (2012). Annu. Rev. Biophys

Returning to the Problem of Designed Assembly:

A remarkable number of highly symmetric groups can be generated with just two operators (or contact types)!

cubic symmetry octahedral symmetry formed only by two-fold and four-fold symmetric contacts

icosahedral symmetry formed only by two-fold and three-fold symmetric contacts

Design Rules (2-fold + 3-fold)

	Symmetry	Construction	Geometry of s	try elements	
cages	Cages and shells				Tetrahedral, T
	T	Dimer-Trimer	54.7°,	Intersecting	2-fold \& 3-fold
	0	Dimer-Trimer	$35.3{ }^{\circ}$,	Intersecting	Intersecting
	I	Dimer-Trimer	$20.9{ }^{\circ}$,	Intersecting	
	Double-layer rings				
	$\mathrm{D}_{\text {n }}$	Dimer-Dimer	180%,	Intersecting	

filaments and rods

Extension of the Symmetric Contact Idea to a Strategy for Designing Self-Assembling Protein Materials

- Natural oligomeric (e.g. dimeric and trimeric) proteins can serve as the building blocks
- Fusing two such proteins together (e.g. by genetic engineering) provides the two interactions needed for a rich variety of designs

The Geometry of the Symmetry Axes Dictates the Assembly and Must be Controlled:

Two example outcomes:

Regularly ordered self-assembly results when the relative orientation of the symmetry elements matches one of the known point, layer, or space groups.

A General Method for Designing
Self-Assembling Protein Materials

- Fusion of two simple oligomers (e.g. dimer + trimer)
- Use of a
continuous α-helix to dictate geometry
- Satisfies predictability req., though not freely designable. (combinatorial)

Padilla, Colovos, \& Yeates, PNAS, 98, 2217 (2001)

1st Design

- Intended architecture: tetrahedral cage (T), 12 subunits, $170 \AA$ diameter, $1 / 2 \mathrm{MDa}$
- Components:
- bromoperoxidase, 276 aa (trimer)
- a helical linker (9 residues from L9 ribosomal protein)
- influenza M1 coat protein, 150 aa (dimer)
- Symmetry element geometry:
- angle between 2-fold and 3-fold: 53.2° [ideal $\left.=54.7^{\circ}\right]$
- failure to intersect: $2.8 \AA$ [ideal $=0.0$]
- Expressed and purified in soluble form from E. coli (48 kD)

Padilla, Colovos, \& Yeates, PNAS, 98, 2217 (2001)

1st Design - A partial success

Discrete particles of approximately the right size, but polymorphic. Crystals never obtained!

Original Design Revisited... 11 years later: Two mutations

Gln24 was mutated to valine to attract the leucine on the linker

Original Design Revisited... 11 years later: Two mutations

A first atomic structure of a designed protein cage

(~ 11 years after publication of idea and preliminary experiments)

- 12 subunits
- Pseudo-tetrahedral symmetry
- Partially flattened (crystal packing and weak helical linker)
Lai, et al. (2012). Science 336, 1129.

Three independent cages in two crystal forms

70 Å diameter (hypothetical) inner sphere

Surprisingly large deviations from symmetric design (~8 Å)

Distorted helices

Distorted dimeric interfaces

Not surprising in retrospect. Interface polymorphism was revealed after initial design choice. (Luo, et al.)

New results by others in symmetry-based design of complex protein assemblies/materials:
A variation on the oligomer fusion strategy
Sinclair JC, Davies KM, Vénien-Bryan C, Noble ME. (2011). Nat. Nanotechnol. 6, 558-62.

C4+C2
multiple geometrically tolerant connections at a shared symmetry axis

D4+D2 with a shared symmetry axis

New results by others in symmetry-based design of complex protein assemblies/materials:

A variation on the oligomer fusion strategy

Yeates, TO. (2011) Nat.
Nanotechnol. 6, 541-2
Sinclair JC, Davies KM, Vénien-Bryan C, Noble ME. (2011). Nat. Nanotechnol. 6, 558-62.

New results by others in symmetry-based design of complex protein assemblies/materials:

Metal interface design

Brodin, J.D., et al. (2012) Nat Chem 4, 375-382

New results by others in symmetry-based design of complex protein assemblies/materials:
Introducing new interface(s) by sequence design

or

fusion

New results by others in symmetry-based design of complex protein assemblies/materials:

Introducing new interface(s) by sequence design

Design of a protein crystal based on coiled coil motifs

(a)

(b)

Lanci, C.J., et al. (2012) PNAS 109, 7304-7309

New results by others in symmetry-based design of complex protein assemblies/materials:
Introducing new interface(s) by sequence design

Design of protein cages and cubic assemblies based on 'general' oligomers and sequence design

King, N.P., et al. (2012). Science 336, 1171-1174.

Future Directions

- Algorithm/strategy improvements; success rates remain low
- Theoretical enumeration of complete rules and possible outcomes
- Biomedical and nanotechnology applications
- display (e.g. vaccine), containment/delivery, bioactive (e.g. enzymatic) solids and surfaces

Possible combinations of two symmetry point groups and their assembly outcomes

Principles for Designing Symmetric Protein Assemblies

Todd Yeates -- RosettaCon 2012

